- Theory and examples
- Exercises
- Links
Binomial Formulas
1. Binomial formulas in compact formThe expression \((a+b)^2\) has to be expanded. The formula showing how to do so is called the first binomial formula:
There are three other binomial formulas:
\[{{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}} \quad \quad (2)\]
\[(a+b)(a-b)={{a}^{2}}-{{b}^{2}} \quad \quad (3)\]
\[(a-b)(a+b)={{a}^{2}}-{{b}^{2}} \quad \quad (4) \]
Examples
\[{{(x+3)}^{2}}={{x}^{2}}+6x+9\]
\[{{(4x-y)}^{2}}=16{{x}^{2}}-8xy+{{y}^{2}}\]
\[(2z+5)(2z-5)=4{{z}^{2}}-25\]
Of course, these examples can also be solved by expanding the terms; the knowledge of these formulas is useful and timesaving since these terms appear frequently.
2. Derivation
The expression \((a+b)^2\) can be expanded as follows:
\[{{(a+b)}^{2}}=(a+b)(a+b)=a\cdot a+a\cdot b+b\cdot a+b\cdot b={{a}^{2}}+2ab+{{b}^{2}}\]
Two remarks:
• The chapter Multiplication and Expanding shows in detail how a product of two sums is expanded.
• A frequent error consists of neglecting the term 2ab (which is commonly denoted as the "mixed term").
Note that \((a+b)^2\) cannot be the same as \(a^2+b^2\). Two illustrations demonstrate this inconsistency:
Expanding also shows
\[{{(a-b)}^{2}}=(a-b)(a-b)=a\cdot a-a\cdot b-b\cdot a+b\cdot b={{a}^{2}}-2ab+{{b}^{2}}\]
\[(a+b)(a-b)=a\cdot a-a\cdot b+b\cdot a-b\cdot b={{a}^{2}}-{{b}^{2}}\]
3. Generalization
The term \((a+b)^2=(a+b)(a+b)\) is a special case of \((a+b)(c+d)\). In the above-mentioned case, \(a=c\) and \(b=d\). We will now show how to expand the general term \((a+b)(c+d)\) correctly:
\[(a+b)(c+d)=a\cdot c+a\cdot d+b\cdot c+b\cdot d \quad \quad (1')\]
Binomials can also be expanded if values inside brackets are subtracted. The remaining three formulas are:
\[(a+b)(c-d)=a\cdot c-a\cdot d+b\cdot c-b\cdot d \quad \quad (2')\]
\[(a-b)(c+d)=a\cdot c+a\cdot d-b\cdot c-b\cdot d \quad \quad (3')\]
\[(a-b)(c-d)=a\cdot c-a\cdot d-b\cdot c+b\cdot d \quad \quad (4')\]
1)
Expand the following terms using the binomial formulas (1-4):
a)
$(3+x)^2$
b)
$(8a-2b)^2$
c)
$(7-x)\cdot(7+x)$
2)
How can you expand the term \((a+b)^3\)?
3)
Expand the following terms using the binomial formulas (1'-4'):
a)
$(2+x) \cdot (y-3)$
b)
$(x-10) \cdot (y-5)$
c)
$(3-a)\cdot(y+b)$
d)
$(3x-y) \cdot (y+2x)$